Three-dimensional imputation of missing monthly river flow data
نویسندگان
چکیده
منابع مشابه
Missing data imputation in multivariable time series data
Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...
متن کاملMultiple Imputation for Missing Data
Multiple imputation provides a useful strategy for dealing with data sets with missing values. Instead of filling in a single value for each missing value, Rubin’s (1987) multiple imputation procedure replaces each missing value with a set of plausible values that represent the uncertainty about the right value to impute. These multiply imputed data sets are then analyzed by using standard proc...
متن کاملPrivacy - preserving imputation of missing data q
Handling missing data is a critical step to ensuring good results in data mining. Like most data mining algorithms, existing privacy-preserving data mining algorithms assume data is complete. In order to maintain privacy in the data mining process while cleaning data, privacy-preserving methods of data cleaning are required. In this paper, we address the problem of privacy-preserving data imput...
متن کاملApplication of Multiple Imputation for Missing Values in Three-Way Three-Mode Multi-Environment Trial Data
It is a common occurrence in plant breeding programs to observe missing values in three-way three-mode multi-environment trial (MET) data. We proposed modifications of models for estimating missing observations for these data arrays, and developed a novel approach in terms of hierarchical clustering. Multiple imputation (MI) was used in four ways, multiple agglomerative hierarchical clustering,...
متن کاملMultiple Imputation for General Missing Data Patterns in the Presence of High-dimensional Data
Multiple imputation (MI) has been widely used for handling missing data in biomedical research. In the presence of high-dimensional data, regularized regression has been used as a natural strategy for building imputation models, but limited research has been conducted for handling general missing data patterns where multiple variables have missing values. Using the idea of multiple imputation b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientia Iranica
سال: 2016
ISSN: 2345-3605
DOI: 10.24200/sci.2016.2096